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A new formula for the phase velocity of electromagnetic waves presented by Chen et al. �Appl. Phys. Lett.
88, 121125 �2006�� is investigated and discussed here. The difference between the result obtained with the new
formula and that obtained directly using the phase term is small for a fundament-mode Gaussian laser beam.
However, this difference is qualitative in some high-order Gaussian-mode laser beams. Using the new formula
for such beams, discontinuities arise in the distribution of the phase velocity. This distribution is not rotation-
ally symmetric with respect to the optical axis, and an imaginary phase velocity may appear near these
discontinuities.
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I. INTRODUCTION

Much research on the measurement or discussion of ve-
locity �phase velocity, group velocity, etc.� has been reported
in the literature, e.g., �1�. Phase and phase velocity are im-
portant physical variables for describing wave fields �2,3�.
Velocity is always a topic of interest because of its role in
some long-standing problems �4,5� and its close relationship
with various applications �6–8�. In a recently published pa-
per �9�, an exact expression for the phase velocity has been
derived for a monochromatic wave field in a homogeneous
medium on the basis of the fundamental wave equation. This
expression is significant in that the phase velocity is suffi-
ciently determined by the wave amplitude with no explicit
reference to the phase. Thus, it is possible to obtain the phase
velocity distribution without measuring the phase. In fact,
measuring the phase motion directly is a challenging experi-
mental technique �10�. The objective of this paper is to in-
vestigate the new formula given in Ref. �9� and to calculate
the phase velocity of a Gaussian laser beam with different
modes and compare the results to that obtained using the
phase terms directly. For simplicity, throughout this paper,
length is normalized by 1 /k=� /2� �� is the wavelength� and
time by 1 /� �� is the angular frequency of the optical
wave�; then the wave vector value is k=1 and the speed of
light c=1.

II. FORMULAE OF THE PHASE VELOCITY

In the original paper �9�, the wave function is assumed to
be of the form ��r , t�=�r�r�ei��r,t�, where �r�r� and ��r , t�
are real functions and �r�r� is the wave amplitude. This
means that �r�r� is always positive. However, in practical
situations, �r�r� may be negative, for example, for high-
order Laguerre–Gaussian �LG� and Hermite–Gaussian �HG�
laser beams. In fact, if �r�r� is not always positive, their
deduction is also correct. Accordingly, we should assume
that ��r�r�� is the wave amplitude and the optical-field inten-
sity is similar as I= ��r�r��2. An important conclusion of the
original paper �9� is that one can obtain the phase velocity

distribution by measuring the field intensity. Even if �r�r� is
not always positive, this conclusion is also right because we
can get
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and from the new formula in Ref. �9�

vp = c�1 +
�2�r

k2�r
	−1/2

. �2�

We know that the phase velocity vp is still a function of the
laser field intensity I.

HG and LG mode laser beams are particular solutions of
the paraxial equation, which is an approximation of the
Helmholtz equation, under the slowly varying-envelope ap-
proximation �SVEA� �11�. So it is reasonable that the above
formula deduced from the Helmholtz equation is valid under
the SVEA for HG- and LG-mode laser beams. For an
x-polarized HG�m ,n�-mode laser beam, its transverse elec-
tric component Ex can be expressed as �12�

Emn =
amnw0

w�z�
Hm�X�Hn�Y�exp�−

r2

w�z�2�
�exp
− i��m + n + 1���z� + �0 −

kr2

2R�z�	�
�exp�ik�z − ct�� . �3�

Here amn is the reference strength, w0 is the beam width at
focus, X=�2x /w�z�, Y =�2y /w�z�, Hm�X� and Hn�Y� are Her-
mite polynomials, and

��z� = tan−1�z/ZR� , �4�

R�z� = z�1 + ZR
2 /z2� , �5�

ZR = kw0
2/2, �6�

w�z� = w0�1 + z2/ZR
2�1/2, �7�

r2 = x2 + y2. �8�

Then, the phase of Ex is given by*Corresponding author; hsh@zjnu.cn
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� = k�z − ct� − �m + n + 1���z� − �0 +
kr2

2R�z�
. �9�

Similarly to Ref. �11�, the value of the phase velocity can be
obtained by

vp = ck/���� = ck�� ��

�x
�2

+ � ��

�y
�2

+ � ��

�z
�2	−1/2

.

�10�

Namely,

vp = ck
 2fz2

ZR
2w�z�2 + �k −

�m + n + 1� − f + r2/w0
2

kw�z�2/2 	2�−1/2

,

�11�

where

f =
2r2

w�z�2 . �12�

To distinguish from the new formula, we will call Eq. �11� as
the old formula.

For convenience, if we just take the x-axial high-order
modes into account, namely, n=0, we have

�r�r� =
amw0

w�z�
Hm�X�exp�−

r2

w�z�2� . �13�

Then, we can get
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Hm�X� 	� . �15�

Then, substituting Eqs. �14� and �15� into the new formula
�Eq. �2��, we can get the phase velocity distribution of the
HG�m ,0�-mode laser beam.

III. DIFFERENCE BETWEEN THE TWO APPROACHES

A. Fundamental-mode case

If the electric field is written as E= Ẽe−ikz, the conditions
for the SVEA can be expressed as �13�

 �2Ẽ

�z2  � 2k
�Ẽ

�z
 or  �2Ẽ

�x2 or  �2Ẽ

�y2 . �16�

We know these scales as ��Ẽ� 1 / kw0 , �Ẽ / �z � 1 / ZR , and

�2Ẽ / �z2 � 1 / ZR
2 �14�. All these mean that the bigger the w0

is, the smaller the difference between the paraxial equation
and the Helmholtz equation will be. Accordingly, the differ-

ence between the result obtained with the new formula �cor-
responding to solutions satisfying the Helmholtz equation�
and that obtained with the old formula for a Gaussian-mode
laser beam �corresponding to solutions satisfying the paraxial
equation� will decrease as w0 increases. This is consistent
with the conclusion in the original paper �9�. Similarly as
Ref. �9�, we find that the lowest-order approximate expres-
sions of the two approaches are exactly the same for a
fundamental-mode Gaussian laser beam. In the focus plane
�z=0�, the contribution from the first term inside the brace of
Eq. �11� is zero. In the xz plane, the contribution from some
of the other terms cannot be counted in. So we select points
in the line �y=w0 /2, z=w0� for analysis. Figure 1�a� shows
the phase velocity as a function of x along this line �solid
lines from using Eqs. �2�, �14�, and �15�, dotted lines from
using Eq. �11�� in continuous fundamental-mode laser beams
with different beam widths kw0=60,30,10,6. We find that
their differences increase as w0 decreases. If w0→	, their
difference is zero because for a plane wave, vp=c, and the
contribution from the term �2�r /k2�r is zero.

Nowadays, a laser beam can be focused onto several
wavelengths, even up to its diffraction limit. To describe this
kind of tightly focused laser field accurately, many high-
order correction solutions beyond the paraxial approximation
solutions have been proposed �15�. The expressions for these
high-order correction solutions are so complicated that it is
hard to get the analytical forms of their phase terms and then
to get the phase velocity by using these phase terms. Figure
1�b� shows the phase velocity as a function of x along the
line �y=w0 /2, z=w0� for continuous fundamental-mode laser
beams with different beam widths kw0=60,30,10,6, where
the solid lines are for a paraxial approximation solution �12�
�using Eqs. �2�, �14�, and �15�� and the dash-dotted lines are
for a seventh-order correction solution �15� �using Eqs. �1�
and �2� with numerical calculation�. Only when the laser
beam is focused onto less than one wavelength �kw0=6� do
the differences become clear. Because the new formula is
exactly derived from the wave equation, in principle, an ac-
curate phase velocity of a real laser field can be obtained by
using the new formula and the high-order correction solu-
tions. The correction effect of the phase velocity is not evi-
dent in Fig. 1�b�. Referring to Fig. 1�a�, the phase velocity
obtained via the phase term might be further away from the
real cases.
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FIG. 1. �Color online� The phase velocity as a function of x
along the line �y=w0 /2, z=w0�. Continuous fundamental-mode la-
ser beams with different beam widths k0w0=60,30,10,6 are used.
�a� Using the new formula �solid lines� and the old formula �dotted
lines� with a paraxial approximation solution. �b� Using new for-
mula and the field intensity obtained with a seventh-order correc-
tion solution �dash-dotted lines� and the same as �a� for solid lines.
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B. High-order mode case

According to Eq. �3�, we can obtain the intensity contri-
bution from the transverse electric component Ex,

Ix�r� =
amn

2 w0
2

w�z�2 �Hm�X�Hn�Y��2exp�−
2r2

w�z�2� . �17�

From Eq. �17�, we find that the intensity of a high-order
HG-mode laser beam alternates between zeros and peaks.
Then, using the new formula, the phase velocity may show
special points at the zeros where �r�r�=0. However, there is
no such problem for the old formula. For an HG�m ,0� mode
laser beam, the special points may arise from the term
Hm+2�X� /Hm�X� in Eq. �15� at the zeros where Hm�X�=0.
From Hermite polynomials, we find that Hm+2�X� is exactly
divisible by Hm�X� when m
2. In order to verify these prob-
lems, here we consider the points in the line y=z=0 of an
HG�2,0� mode laser beam
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4 −
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1
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2 ��2x2

w0
2 − 3� −

2w0
2

4x2 − w0
2	 . �18�

Figure 2�a� shows the phase velocity as a function of x
along the line y=z=0 �solid line using the new formula �Eqs.
�2� and �18��, dotted line using the old formula�. Here, a
continuous HG�2,0� mode laser beam with w0=10 is used.
We find that the difference between the results obtained by
these two approaches is very small except for two small
ranges near the special points x= �0.5w0 which are exactly
the points H2�X�=0, corresponding to the intensity Ix=0.
Figure 2�b� shows the intensity Ix as a function of x along the
line y=z=0. Obviously, the phase velocity obtained with the
new formula appears to have step changes near these two
points. From the mathematical form, �2�r /�r→	 when Ix
→0 and then vp→0. However, the extreme value of
�2�r /�r in this point is completely different for the different
approximation directions, namely,

lim
�x�−w0/2→0−

�2�r

�r
= + 	 , �19�

lim
�x�−w0/2→0+

�2�r

�r
= − 	 . �20�

According to the new formula, Eq. �19� results in vp=0.
During this process of approximation, �2�r /�r=0 results in
vp=c. Then the phase velocity runs from c to zero rapidly.
During the process of approximation in Eq. �20�, �2�r /�r
→−k2 results in vp→	 and the phase velocity will become
an imaginary speed if �2�r /�r
−k2. Here the imaginary
speed appears not only at a point but also in small regions
near the points �r=0. There is no such problem of imaginary
speed for the old formula. The phase jump may not be
strange near a zero point of amplitude, but not all of the
points where Ix=0 will be such discontinuities for the phase
velocity. It depends on the nearby distribution of the ampli-
tude. For example, �r=0=0 for the HG�1,0�-mode, but
lim

r→0−
��2�r /�r�= lim

r→0+
��2�r /�r� and this point is a continuous

point for phase velocity.
On the other hand, the intensity distribution of a high-

order HG-mode laser beam does not have rotational symme-
try with respect to the optical axis. Accordingly, the phase
velocity distribution obtained by the new formula may not be
rotationally symmetric. However, using the old formula �Eq.
�11��, we can get a phase velocity distribution with a rota-
tional symmetry. Because Eq. �14� is rotationally symmetric,
the symmetry of the phase velocity distribution obtained
with the new formula may be broken by the term given in
Eq. �15�. If the Hermite polynomials can satisfy the follow-
ing relation:

Hm+2�X�
Hm�X�

= 2�2X2 − 2m − 1� , �21�

Eq. �15� and then the phase velocity distribution obtained by
the new formula will be rotationally symmetric. It is easy to
test that m=0 satisfies the above relation, as this accords with
the symmetric intensity distribution of a fundamental
�HG�0,0�� mode. It is interesting that m=1 also satisfies the
above relation even though the intensity distribution of the
HG�1,0� mode is not rotationally symmetric. We do not ex-
clude that an m�1 may exist which can satisfy this relation.
Here we find that m=2 does not satisfy this relation. This
character is different from that of the old formula.

IV. MEASUREMENT PROBLEM

When we use the above new formula to measure the
phase velocity distribution of a real optical field �nonplanar
wave�, it is very difficult to disjoin the intensity contributed
from one component and that from another. An example of
this problem is measuring the phase velocity Ex of an
x-polarized laser beam �Ey =0�. According to Maxwell’s
equations, the electric component Ez can be approximately
obtained by using Ez= �i /k���Ex /�x�. The intensity we mea-
sured is I= �Ex�2+ �Ez�2, but the intensity we wanted is Ix
= �Ex�2. If we use the measured intensity to calculate the
phase velocity of Ex, the systematic error introduced by the
component Ez is
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FIG. 2. �Color online� �a� The phase velocity as a function of x
along the line y=z=0 �solid line using the new formula, dotted line
using the old formula�. �b� The intensity Ix as a function of x along
the line y=z=0. A continuous HG�2,0�-mode laser beam with w0

=10 is used.
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Figure 3 shows the contour of �a� the above systematic
error scaled by �vp��103 and �b� the phase velocity of Ex
scaled by �vp−c��103 in the y=0 plane, where a continuous
fundamental-mode Gaussian laser beam with a beam width
w0=30 is used. From the distribution of Ez �Fig. 1�a� in Ref.
�11��, we find that the regions with a biggish error do not
overlap the regions with a higher distribution of Ez even
though the error is introduced by Ez. This is especially the
case in the central region where Ez is almost zero, but the
error is nonzero. This is because the phase velocity is related
to the second-order differential coefficient of �Ez�. From the
distribution of phase velocity shown in Fig. 3�b�, we find that
the error will increase as the phase velocity deviates from the
speed of light c. As w0 increases, the rate of change of �Ez

will decrease and the error will also decrease correspond-
ingly. If w0→	, we can get vp→0 because Ez�0 for
plane waves. Our calculation shows that the systematic error
�vp� is a very small quantity. On the other hand, since the
phase velocity is very close to the speed of light, the devia-
tion �vp−c� between them is also a very small quantity, as
shown in Fig. 3�b�. In the regions where �vp−c��0, we find
that �vp� is even larger than �vp−c�.

V. DISCUSSION AND CONCLUSION

In summary, the new formula for the phase velocity of
electromagnetic waves is an interesting one and some aspects
of it need attention. For a fundamental-mode Gaussian laser
beam, the results obtained with this new formula and directly
from the phase term are almost the same. For high-order
Gaussian-mode laser beams, discontinuites sometimes ap-
pear in the distribution of the phase velocity obtained with
the new formula. The value of the phase velocity appears to
have step changes near these discontinuites, and an imagi-
nary speed even appears. However, the phase velocity ob-
tained with the old formula is always continuous. In addition,
for some high-order modes, the distribution obtained with
the new formula is not rotationally symmetric. This is differ-
ent from the results from the old formula. The agreement
between these two approaches is reasonable because the
Gaussian laser beams satisfy the Helmholtz equation under
the SVEA and the new formula is exactly derived from the
Helmholtz equation. However, their differences for high-
order modes are not a problem of quantity because they still
appear even for a large focused spot size w0. The real reason
behind this is not yet clear and needs further study. When we
use the new formula to calculate the phase velocity of a wave
field component by measuring the field intensity, we should
take account of the fact that the other components of the
wave field always introduce errors.
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FIG. 3. �Color online� �a� Systematic errors scaled by �vp�
�103 in the plane y=0. �b� The distribution of phase velocity
scaled by �vp−c��103 in the plane y=0. A continuous fundamental-
mode Gaussian laser beam with beam width w0=30 is used.
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